絞り込み

16637

広告

Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway.

著者 Franchitto A , Pirzio LM , Prosperi E , Sapora O , Bignami M , Pichierri P
J Cell Biol.2008 Oct 20 ; 183(2):241-52.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

Section of Experimental and Computational Carcinogenesis, Istituto Superiore di Sanità, 00161 Rome, Italy.

スターを付ける スターを付ける     (163view , 0users)

Full Text Sources

Miscellaneous

Research Materials

View related products from antibodies-online.com

Failure to stabilize and properly process stalled replication forks results in chromosome instability, which is a hallmark of cancer cells and several human genetic conditions that are characterized by cancer predisposition. Loss of WRN, a RecQ-like enzyme mutated in the cancer-prone disease Werner syndrome (WS), leads to rapid accumulation of double-strand breaks (DSBs) and proliferating cell nuclear antigen removal from chromatin upon DNA replication arrest. Knockdown of the MUS81 endonuclease in WRN-deficient cells completely prevents the accumulation of DSBs after fork stalling. Also, MUS81 knockdown in WS cells results in reduced chromatin recruitment of recombination enzymes, decreased yield of sister chromatid exchanges, and reduced survival after replication arrest. Thus, we provide novel evidence that WRN is required to avoid accumulation of DSBs and fork collapse after replication perturbation, and that prompt MUS81-dependent generation of DSBs is instrumental for recovery from hydroxyurea-mediated replication arrest under such pathological conditions.
PMID: 18852298 [PubMed - indexed for MEDLINE]
印刷用ページを開く Endnote用テキストダウンロード