絞り込み

17905

広告

Fast ScanNet: Fast and Dense Analysis of Multi-Gigapixel Whole-Slide Images for Cancer Metastasis Detection.

著者 Lin H , Chen H , Graham S , Dou Q , Rajpoot N , Heng PA
IEEE Trans Med Imaging.2019 Jan 07 ; ():.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (8view , 0users)

Full Text Sources

Lymph node metastasis is one of the most important indicators in breast cancer diagnosis, that is traditionally observed under the microscope by pathologists. In recent years, with the dramatic advance of high-throughput scanning and deep learning technology, automatic analysis of histology from wholeslide images has received a wealth of interest in the field of medical image computing, which aims to alleviate pathologists' workload and simultaneously reduce misdiagnosis rate. However, automatic detection of lymph node metastases from whole-slide images remains a key challenge because such images are typically very large, where they can often be multiple gigabytes in size. Also, the presence of hard mimics may result in a large number of false positives. In this paper, we propose a novel method with anchor layers for model conversion, which not only leverages the efficiency of fully convolutional architectures to meet the speed requirement in clinical practice, but also densely scans the wholeslide image to achieve accurate predictions on both micro- and macro-metastases. Incorporating the strategies of asynchronous sample prefetching and hard negative mining, the network can be effectively trained. The efficacy of our method are corroborated on the benchmark dataset of 2016 Camelyon Grand Challenge. Our method achieved significant improvements in comparison with the state-of-the-art methods on tumour localization accuracy with a much faster speed and even surpassed human performance on both challenge tasks.
PMID: 30624213 [PubMed - as supplied by publisher]
印刷用ページを開く Endnote用テキストダウンロード