絞り込み

17013

広告

Cytosolic glucosylceramide regulates endolysosomal function in Niemann-Pick type C disease.

著者 Wheeler S , Haberkant P , Bhardwaj M , Tongue P , Ferraz MJ , Halter D , Sprong H , Schmid R , Aerts JMFG , Sullo N , Sillence DJ
Neurobiol Dis.2019 Mar 11 ; ():.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (77view , 0users)

Full Text Sources

Medical

Research Materials

Niemann-Pick type C disease (NPCD) is a neurodegenerative disease associated with increases in cellular cholesterol and glycolipids and most commonly caused by defective NPC1, a late endosomal protein. Using ratiometric probes we find that NPCD cells show increased endolysosomal pH. In addition U18666A, an inhibitor of NPC1, was found to increase endolysosomal pH, and the number, size and heterogeneity of endolysosomal vesicles. NPCD fibroblasts and cells treated with U18666A also show disrupted targeting of fluorescent lipid BODIPY-LacCer to high pH vesicles. Inhibiting non-lysosomal glucocerebrosidase (GBA2) reversed increases in endolysosomal pH and restored disrupted BODIPY-LacCer trafficking in NPCD fibroblasts. GBA2 KO cells also show decreased endolysosomal pH. NPCD fibroblasts also show increased expression of a key subunit of the lysosomal proton pump vATPase on GBA2 inhibition. The results are consistent with a model where both endolysosomal pH and Golgi targeting of BODIPY-LacCer are dependent on adequate levels of cytosolic-facing GlcCer, which are reduced in NPC disease.
PMID: 30872158 [PubMed - as supplied by publisher]
印刷用ページを開く Endnote用テキストダウンロード