絞り込み

17054

広告

「オンライン映画祭」開催 ネットで無料上映 新型コロナ

新型コロナウイルスの感染拡大によって世界中で映画の製作や上映が滞る中、カンヌや東京など世界の21の映画祭が参加して作品をインターネット上で無料で上映する「オンラ...

  1. [企業] ASCO'20 膠芽腫患者への...
  2. 新型コロナウイルス感染症の現在の状況と厚...
  3. [企業] ASCO'20 Kura社のフ...
  4. 海洋コンベアベルトの終着点である北部北太...

ニュース一覧

Quantifying inactive lithium in lithium metal batteries.

著者 Fang C , Li J , Zhang M , Zhang Y , Yang F , Lee JZ , Lee MH , Alvarado J , Schroeder MA , Yang Y , Lu B , Williams N , Ceja M , Yang L , Cai M , Gu J , Xu K , Wang X , Meng YS
Nature.2019 Aug ; 572(7770):511-515.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (10view , 0users)

Full Text Sources

Other Literature Sources

Lithium metal anodes offer high theoretical capacities (3,860 milliampere-hours per gram), but rechargeable batteries built with such anodes suffer from dendrite growth and low Coulombic efficiency (the ratio of charge output to charge input), preventing their commercial adoption. The formation of inactive ('dead') lithium- which consists of both (electro)chemically formed Li compounds in the solid electrolyte interphase and electrically isolated unreacted metallic Li (refs )-causes capacity loss and safety hazards. Quantitatively distinguishing between Li in components of the solid electrolyte interphase and unreacted metallic Li has not been possible, owing to the lack of effective diagnostic tools. Optical microscopy, in situ environmental transmission electron microscopy, X-ray microtomography and magnetic resonance imaging provide a morphological perspective with little chemical information. Nuclear magnetic resonance, X-ray photoelectron spectroscopy and cryogenic transmission electron microscopy can distinguish between Li in the solid electrolyte interphase and metallic Li, but their detection ranges are limited to surfaces or local regions. Here we establish the analytical method of titration gas chromatography to quantify the contribution of unreacted metallic Li to the total amount of inactive lithium. We identify the unreacted metallic Li, not the (electro)chemically formed Li in the solid electrolyte interphase, as the dominant source of inactive lithium and capacity loss. By coupling the unreacted metallic Li content to observations of its local microstructure and nanostructure by cryogenic electron microscopy (both scanning and transmission), we also establish the formation mechanism of inactive lithium in different types of electrolytes and determine the underlying cause of low Coulombic efficiency in plating and stripping (the charge and discharge processes, respectively, in a full cell) of lithium metal anodes. We propose strategies for making lithium plating and stripping more efficient so that lithium metal anodes can be used for next-generation high-energy batteries.
PMID: 31435056 [PubMed - in process]
印刷用ページを開く Endnote用テキストダウンロード