絞り込み

16637

広告

Non-small cell lung cancer-targeted, redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a second-generation irreversible epidermal growth factor inhibitor-Afatinib: In vitro and in vivo evaluation.

著者 Wang J , Su G , Yin X , Luo J , Gu R , Wang S , Feng J , Chen B
Biomed Pharmacother.2019 Oct 03 ; 120():109493.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (16view , 0users)

Full Text Sources

Miscellaneous

Afatinib (Afa), a second-generation irreversible epidermal growth factor inhibitor for the development of non-small cell lung cancer, has low bioavailability and adverse reactions. Nanoscaled drug delivery systems offer promising alternatives to address these defects and improve therapeutic outcomes. In the present study, a Tf contained, redox-sensitive ligand was synthesized and used for the preparation of afatinib loaded, Tf modified redox-sensitive lipid-polymer hybrid nanoparticles (Tf-SS-Afa-LPNs). Subsequently, studies of biological experiments in vitro and in vivo were performed to investigate the therapeutic effect of the system in lung cancer. The results showed that Tf-SS-Afa-LPNs has particle size of 103.5 ± 4.1 nm and zeta potential of -21.2 ± 2.4 mV. Significantly higher drug release was observed in the presence of glutathione (GSH). The area under the plasma concentration - time curve (AUC), peak concentration (C) and terminal half life (T) of Tf-SS-Afa-LPNs were 866.56 mg/L.h, 25.62 ± 3.21 L/kg/h, and 43.25 ± 2.31 h. Tf-SS-Afa-LPNs exhibited the most remarkable in vivo anti-tumor efficiency efficacy, which inhibited the tumor volume from 919 mm to 212 mm. Tf-SS-Afa-LPNs is a promising platform for the lung cancer treatment.
PMID: 31586902 [PubMed - as supplied by publisher]
印刷用ページを開く Endnote用テキストダウンロード