絞り込み

16636

広告

Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants.

著者 Li H , Zhang J , Yao Y , Miao X , Chen J , Tang J
Environ Pollut.2019 Oct 04 ; 255(Pt 2):113337.
この記事をPubMed上で見るPubMedで表示
この記事をGoogle翻訳上で見る Google翻訳で開く

スターを付ける スターを付ける     (6view , 0users)

Full Text Sources

Miscellaneous

In this work, we report on the synthesis and characterization of nanoporous bimetallic metal-organic frameworks (FeCo-BDC). Effects of synthesis time and temperature on the structures, morphology, and catalytic performance of FeCo-BDC were investigated. Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) were used to reveal the morphological and textural characteristics. The crystal structure and chemical composition of FeCo-BDC were determined by means of X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements. Interestingly, FeCo-BDC grew into the same crystal structure with different morphology in the temperature of 110-150 °C with 12-48 h. The heterogeneous catalytic activity of FeCo-BDC was tested to activate peroxydisulfate (PDS) and peroxymonosulfate (PMS) for removal of methylene blue (MB). The results found that FeCo-BDC synthesized at 150 °C with 24 h exhibited the best catalytic performance for PMS and obtained 100% of MB removal within 15 min. The abundant unsaturated metal active sites of Fe(II) and Co(II) in the skeleton of FeCo-BDC made a great contribution to the generation of sulfate () and hydroxyl radicals (OH), which resulted in the excellent performance for MB degradation.
PMID: 31610507 [PubMed - as supplied by publisher]
印刷用ページを開く Endnote用テキストダウンロード